
Resolução – Questão 1 – 25 pts – Fenômenos de Transporte (Força Hidrostática)

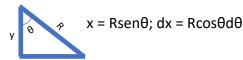
- Considerações:
- 1) Fluido Estático;
- 2) Fluido Incompressível;
- 3) Pressão atmosférica atua em ambos os lados da parede.

• Equações básicas:
$$\frac{dp}{dh} = \rho g = \gamma$$
; $SG = \frac{\rho_{S,T^{\circ}C}}{\rho_{H_2O,4^{\circ}C}}$; $F_{R_y} = F_V = -\int p dA_y$

- Profundidade em relação ao ponto de localização de F_{Ry} : $h=L-(R^2-x^2)^{\frac{1}{2}}$
- Área infinitesimal: dA = bdx (b é a largura do tanque).
- Pressão manométrica: $p = \rho g h = \gamma h$
- Considerando as equações de p, h e dA temos que a equação F_{R_y} pode ser escrita observando a variação da força ao longo da superfície curva, ou seja, variando em relação ao raio de curvatura (0 a R).

$$F_{V} = -\int_{A_{y}} p dA_{y} = -\int_{A_{y}} \rho g h dA_{y} = -\int_{0}^{R} \gamma \left[L - (R^{2} - x^{2})^{\frac{1}{2}} \right] b dx$$

$$F_{V} = -\gamma b \int_{0}^{R} \left[L - (R^{2} - x^{2})^{\frac{1}{2}} \right] dx = \gamma b \left[\int_{0}^{R} L dx - \int_{0}^{R} \left((R^{2} - x^{2})^{\frac{1}{2}} \right) dx \right]$$
Integral 1 Integral 2

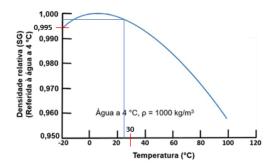

• Resolução das integrais 1 e 2

Integral 1:

$$\int_0^R L dx = Lx \Big|_0^R = LR$$

Integral 2:

Resolução da integral 2 usando coordenadas polares


$$\int_{0}^{R} (R^{2} - x^{2})^{\frac{1}{2}} dx = \int_{0}^{\frac{\pi}{2}} [R^{2} - (Rsen\theta)^{2}]^{\frac{1}{2}} Rcos\theta d\theta = R^{2} \int_{0}^{\frac{\pi}{2}} [1 - (sen\theta)^{2}]^{\frac{1}{2}} cos\theta d\theta$$

Usando as identidades trigonométricas da Tabela 1: $sen^2\theta + cos^2\theta = 1$; $cos^2\theta = 1 - sen^2\theta$; $cos^2\theta = (1 + cos^2\theta)/2$ temos:

$$R^{2} \int_{0}^{\frac{\pi}{2}} (\cos^{2}\theta)^{\frac{1}{2}} \cos\theta d\theta = R^{2} \int_{0}^{\frac{\pi}{2}} \cos^{2}\theta d\theta = R^{2} \int_{0}^{\frac{\pi}{2}} \frac{(1+\cos 2\theta)}{2} d\theta = \frac{1}{2} R^{2} \left[\int_{0}^{\frac{\pi}{2}} d\theta + \int_{0}^{\frac{\pi}{2}} \cos 2\theta d\theta \right]$$

$$\frac{1}{2} R^{2} \left[\theta \int_{0}^{\frac{\pi}{2}} + \frac{\sin 2\theta}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \right] = \frac{1}{2} R^{2} \theta \int_{0}^{\frac{\pi}{2}} = \frac{\pi}{4} R^{2} \quad F_{V} = -\gamma b \left[LR - \frac{\pi}{4} R^{2} \right] = \gamma b R \left[L - \frac{\pi}{4} R \right]$$

• Pelo gráfico da Figura 2 foi considerado o valor de SG igual a 0,998. Sendo assim temos que: $\rho_{H_20,25^{\circ}C} = \rho_{H_20,4^{\circ}C}SG = 1000*0,998 = 998~kg/m^3$

 $\bullet \quad \text{Utilizando a equação } F_V = \gamma b R \left[L - \frac{\pi}{4} R \right] \text{ temos:} \\ F_V = -998*9,81*3*1,2* \left[3 - \frac{\pi}{4} * 1,2 \right] \approx -7,25 \text{ x } 10^4 \text{ N (FRy)}.$

	Critério	Pontuação		
	Representação do eixo de referência (x, y) e localização da componente vertical da força (FR _y).			
	Definição das considerações de análise para resolução do problema. A consideração 3 é utilizada para calcular a força de pressão manométrica, ou seja, desconsiderar a pressão atmosférica facilitando a resolução matemática.	1,0		
	Escrever as equações básicas. Obs.: Não esquecer de colocar o sinal negativo na equação para o cálculo de FR _y . O sinal indica que FR _y é representada no sentido contrário de ação da força de pressão no tanque.	1,5		
Questão 1	Mostrar a profundidade (h) em relação ao ponto de localização de FR $_y$ e a altura da coluna de água no tanque (L) e escrever a equação de h em função de R, L e x.	2,0		
	Escrever as equações da área infinitesimal dAy e da pressão manométrica e substituir na equação de FR_y considerando os limites de integração e isolando os termos contantes.	1,5		
	Resolver as duas integrais de FR _y de forma direta (integral 1) e utilizando as identidades trigonométricas da Tabela 1 (integral 2).	15,0		
	Utilizar a Figura 2 para tirar o valor da densidade relativa (SG) da água na temperatura de 25°C para determinar a massa especifica da água (ρ) por meio da equação SG. Obs.: Considerar valor de SG entre 0,997 a 1,000.	1,5		
	Utilizar os valores mostrados na Figura 1, a gravidade dada no enunciado e valor calculado por meio da equação de SG utilizando o gráfico da Figura 2 pra obter o valor da componente vertical da força (FR _y).	1,5		

Resolução – Questão 2 – 25 pts – Hidrologia (Vazão Máxima)

Ajuste de distribuição estatística

Princípio	Quando Utilizar	Diferença
A vazão é uma variável aleatória continua, para a qual podemos elaborar um histograma de frequência simples ou acumulado para uma dada amostra, assim pode-se conhecer a frequência com que esta variável assumiu valores dentro de dado intervalo, durante as observações realizadas para a formação da amostra. O interesse deste estudo estatístico é a projeção do que ocorrerá no futuro em termos de realizações desta variável no passado. A série dos valores amostrais de vazão máxima anual deve ser independente, o processo natural de ocorrência das vazões é estacionário e a amostra é representativa da população.	A vazão máxima pode ser estimada, para um risco escolhido, com base no ajuste de uma distribuição estatística (por exemplo: Gumbel, Log-Pearson III) quando existem dados históricos para o local de interesse e as condições da	Difere dos outros métodos pois:

Regionalização de Vazões

Princípio	Quando Utilizar	Diferença		
A regionalização consiste num	Quando não existe uma série	Difere dos outros		
conjunto de ferramentas que	histórica de dados no ponto	métodos pois:		
exploram ao máximo as	de interesse, ou ela é	1) demanda a		
informações existentes na região de	insuficiente, pode-se utilizar a	existência de dados		
interesse, visando à estimativa das	regionalização de vazões.	de vazões na área de		
variáveis hidrológicas em locais		interesse		
sem dados ou com dados		(normalmente a		
insuficientes para um ajuste de uma		montante ou jusante do		
distribuição de estatística. Assim a		ponto de interesse).		
regionalização de vazões permite a				
estimativa da vazão máxima em				
locais sem dados, com base na				
vazão obtida em postos				
existentes em outro ponto da				
região de interesse. Normalmente				
estes pontos localizam-se a				
montante ou a jusante do ponto de				
interesse para a vazão. A				
regionalização de vazões pode ser				
elaborada como uso de: funções estatísticas de variáveis				
hidrológicas, funções específicas que relacionam variáveis e				
parâmetros de modelos				
hidrológicos.				
murologicos.				

Precipitação

Princípio				Quando Utilizar			Diferença				
Α	vazão	máxima	pode	ser	Este	méto	do é útil qu	ando a	Difere	dos	outros
est	imada	com	base	na	área	de	interesse	sofreu	métodos	pois	não
pre	cipitação	, por	métodos	que	modif	icaçõ	es e/ou qua	ando da	demanda	a dad	os de

representam os principais	ausência de dados de vazão	vazão	área	de
processos da transformação da	na área de interesse.	interesse.		
precipitação em vazão e pelo				
método racional, que engloba todos				
os processos em apenas um				
coeficiente.				

	Critério	Pontuação
	Reconhecer a vazão como uma variável aleatória contínua sendo possível o uso de histogramas simples ou acumulados para determinar a frequência com que esta variável assumiu valores dentro de dado intervalo, durante as observações realizadas para a formação da amostra e assim permitir o ajuste de distribuição estatística para projetar o futuro com base na realização do passado.	5,0
	Explicitar que a regionalização consiste num conjunto de ferramentas que exploram ao máximo as informações existentes na região de interesse, visando à estimativa das variáveis hidrológicas (vazão).	5,0
2	Explicar que a vazão máxima pode ser estimada com base na precipitação através do uso de métodos que representam os principais processos da transformação da precipitação em vazão	5,0
Questão 2	O ajuste de uma distribuição estatística deve ser utilizado quando no ponto de interesse existem dados históricos em quantidade suficiente e as condições da bacia não se modificaram. A regionalização de vazões deve ser utilizada quando não existem dados de vazão em quantidade suficiente no local de interesse, mas estes dados existem para outros pontos da bacia de interesse e podem ser utilizados para estimar a vazão no ponto de interesse. A precipitação: este método é útil quando a área de interesse sofreu modificações e locais onde não se tem disponíveis dados de vazão ou eles são insuficientes para se utilizar os métodos anteriores e/ou quando da ausência de dados de vazão na área de interesse.	6,0
	A diferença principal entre os métodos é: Ajuste de distribuição estatística demanda a existência de série histórica no local de interesse. Regionalização de vazões demanda a existência de série histórica na área de interesse. Precipitação não demanda a existência de dados de vazão na área de interesse.	4,0

Resolução – Questão 3 – 25 pts – Saneamento (Tratamento de água)

Na determinação das vazões e capacidades das unidades das instalações de abastecimento, os diversos consumos (doméstico, industrial, comercial, público e as perdas) são expressos por meio do consumo per capta (qpc), dado em L/hab. dia, resultado entre a divisão do total de demanda a ser atendida pelo sistema e a população a ser abastecida.

A Figura 1 mostrada na prova apresenta as vazões nas diversas unidades de um sistema de abastecimento de água (Q_{AAB}, Q_{AAT} e Q_{DIST}).

A estimativa da capacidade das unidades do sistema deve levar em conta a variação temporal das vazões. As unidades são projetadas para funcionar com a demanda média (\bar{Q}), mas também devem ser capazes de suprir as demandas que ocorrem alongo do ano e ao longo dos dias. Assim no dimensionamento das diversas unidades devem ser considerados coeficientes de reforço (k_1 e k_2).

Para o dimensionamento do sistema de abastecimento de água tem-se que obter a vazão média (\bar{Q}) dada por eq. 1:

$$\bar{Q}\left(\frac{L}{s}\right) = \frac{P(hab) \times qpc(\frac{L}{hab \times dia})}{86.400 \left(\frac{s}{dia}\right)}$$
 (eq. 1)

Onde:

P – População (hab.) qpc – consumo per capita (L/hab.*dia)

O cálculo das vazões Q_{AAB}, Q_{AAT} e Q_{DIST} (indicadas na Figura 1) são como apresentados nas equações (2, 3 e 4).

$$Q_{AAB} = \frac{\bar{Q} \times K_1 \times 24}{t} \times \left(1 + \frac{q_{ETA}}{100}\right) + Q_s \tag{eq. 2}$$

$$Q_{AAT} = \frac{\bar{Q} \times K_1 \times 24}{t} + Q_S \tag{eq. 3}$$

$$Q_{DIST} = \bar{Q} \times K_1 \times K_2 + Q_S \tag{eq. 4}$$

As 3 vazões consideram o coeficiente do dia de maior consumo (K_1) e a vazão média diária \bar{Q} .

q_{ETA} – consumo de água na ETA (%).

O período de funcionamento da produção de água (t) é utilizado para cálculo de Q_{AAB} e Q_{AAT}. Por exemplo o sistema pode ser dimensionado para trabalhar 16 ou 24 hs.

Q_{AAB} – Considera o consumo de água pela ETA. Esta água será utilizada na limpeza das estruturas da ETA (por. ex. limpeza dos filtros).

O coeficiente da hora de maior consumo (k2) é utilizado somente no cálculo de QDIST.

A vazão Q_s é a vazão singular de grande consumidor (L/s).

	Critério	Pontuação
Questão 3	Escrever as equações para resolução do problema.	7,5
	Colocar o significado e as unidades dos parâmetros indicados no equacionamento do problema.	5,0
	Relacionar o coeficiente do dia de maior consumo (k_1) , a vazão média (\bar{Q}) e a vazão singular de grande consumidor (Q_s) ao cálculo das 3 vazões $(Q_{AAB}, Q_{AAT} e Q_{DIST)}$.	3,5
	Relacionar o consumo de água na ETA (q _{ETA}) ao cálculo de Q _{AAB} .	3,0
	Relacionar o período de funcionamento da produção de água (t) no cálculo de Q _{AAB} e Q _{AAT} .	3,0
	Relacionar o coeficiente da hora de maior consumo (k_2) a vazão de distribuição ($Q_{\text{DIST})}$.	3,0

Resolução - Questão 4 - 25 pts - Saneamento (Esgotamento Sanitário)

$$\bar{Q}_i = \frac{CP_iq}{86400}; \ \bar{Q}_f = \frac{CP_fq}{86400}; \ L_V = L_s + \frac{L_d}{2}$$

Taxa de Contribuição Inicial:
$$T_{xis} = \frac{K_2 \bar{Q}_i}{L_V} + T_{inf}; T_{xid} = \frac{K_2 \bar{Q}_i}{2L_V}$$

$$Taxa\ de\ Contribuição\ Final:\ T_{xfs}\ =\ \frac{K_1K_2\bar{Q}_f}{L_V}+\ T_{inf};\ T_{xfd}=\ \frac{K_1K_2\bar{Q}_f}{2L_V}+\ T_{inf}$$

Vazão média inicial

$$\bar{Q}_i = \frac{CP_i \, q}{86400} = \frac{0.8 * 3400 * 200}{86400} = 6.296 \, L/s$$

Comprimento virtual da rede inicial

$$L_{Vi} = L_s + \frac{L_d}{2} = 791 + \frac{692}{2} = 1137 m = 1,137 Km$$

• Taxa de contribuição linear inicial

Rede simples:
$$T_{xis} = \frac{K_2 \bar{Q}_i}{L_{Vi}} + T_{inf} = \frac{1,5*6,296}{1,137} + 0,1 = 8,406 \frac{L}{s} Km = 0,00841 \frac{L}{s} m$$

Rede dupla:
$$T_{xid} = \frac{K_2 \bar{Q}_i}{2L_{Vi}} + T_{inf} = \frac{1,5*6,296}{2*1,137} + 0,1 = 4,253 \frac{L}{s} Km = 0,00425 \frac{L}{s} m$$

Vazão média final

$$\bar{Q}_f = \frac{CP_f q}{86400} = \frac{0.8*13000*200}{86400} = 24,074 L/s$$

• Comprimento virtual da rede final

$$L_{Vf} = L_{Vi} = 1137 \, m = 1,137 \, Km$$

Taxa de contribuição linear final

Rede simples:
$$T_{xfs} = \frac{K_1 K_2 \bar{Q}_f}{L_{Vf}} + T_{inf} = \frac{1,2*1,5*24,074}{1,137} + 0,1 = 38,212 \frac{L}{s} Km = 0,03821 \frac{L}{s} m$$

Rede dupla:
$$T_{xfd} = \frac{K_1 K_2 \bar{Q}_f}{2L_{Vf}} + T_{inf} = \frac{1,2*1,5*24,074}{2*1,137} + 0,1 = 19,156 \frac{L}{s} Km = 0,01915 \frac{L}{s} m$$

	Critério	Pontuação
	Escrever as equações para resolução do problema.	1,0
	Calcular a vazão média inicial $(\overline{\mathbb{Q}}_i)$ utilizando a população estimada para o ano de	
	2023 (3400 hab) mostrada na Figura 2 e os dados do coeficiente de retorno (C) e o	3,0
	consumo de água efetivo per capita (q) apresentados na Tabela 1.	
	Calcular o comprimento virtual da rede inicial ($L_{ m Vi}$) utilizando os comprimentos simples ($L_{ m s}$) e duplo (L_d) da rede apresentados na Tabela 1.	3,0
Questão 4	Determinar a taxa de contribuição linear inicial (T_{xi}) para as redes simples e dupla utilizando-se os valores encontrados para a vazão média inicial $(\overline{\mathbb{Q}}_i)$ e comprimento virtual da rede inicial (L_{Vi}) e os dados do coeficiente de vazão máxima horária (K_2) e a taxa de contribuição de infiltração (T_{inf}) apresentados na Tabela 1.	6,0
	Calcular a vazão média final $(\overline{\mathbb{Q}}_f)$ utilizando a população estimada para o ano de 2053 (13000 hab) mostrada na Figura 2 e os dados do coeficiente de retorno (C) e o consumo de água efetivo per capita (q) apresentados na Tabela 1.	3,0
	Calcular o comprimento virtual da rede final (L_{Vf}) utilizando os comprimentos simples (L_s) e duplo (L_d) da rede apresentados na Tabela 1. Obs.: O comprimento virtual da rede inicial e final é o mesmo.	3,0
	Determinar a taxa de contribuição linear final (T_{xf}) para as redes simples e dupla utilizando-se os valores encontrados para a vazão média final $(\overline{\mathbb{Q}}_f)$ e comprimento virtual da rede final (L_{Vf}) e os dados dos coeficientes de vazão máxima diária e horária $(K_1 \ e\ K_2)$ e a taxa de contribuição de infiltração (T_{inf}) apresentados na Tabela 1.	6,0