

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONCURSO DOCENTE EBTT - 2024 EDITAL ESPECÍFICO № 03/2024 - ÁREA ENGENHARIA ELÉTRICA CAMPUS ARAXÁ

GABARITO

QUESTÃO	GABARITO	
1	В	
2	D	
3	D	
4	Anulada	
5	В	
6	Α	
7	С	
8	В	
9	D	
10	С	
11	Α	
12	Е	
13	В	
14	D	
15	В	
16	В	

CRITÉRIOS DE AVALIAÇÃO QUESTÕES DISSERTATIVAS

Questão 17

Critério de correção		
Letra A	Resposta correta valor= 2,4 pontos	
Letra B	Resposta correta valor= 2,4 pontos	
Letra C	Resposta correta valor= 2,4 pontos	
Letra D	Resposta correta valor= 2,4 pontos	
Letra E	Resposta correta valor= 2,4 pontos	

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONCURSO DOCENTE EBTT - 2024 EDITAL ESPECÍFICO Nº 03/2024 - ÁREA ENGENHARIA ELÉTRICA CAMPUS ARAXÁ

Questão 18

Letra A – Solução 1

Se o candidato solucionou a questão utilizando a equação de malha fechada e o teorema de valor final:

Critério	Pontuação
Solução 1 – encontrar a função de transferência em malha fechada	1,6
Solução 1 – encontrar a equação do erro em função da entrada U(s)	0,4
Solução 1 – encontrar a equação do erro em função da entrada 1/s^2	0,8
Solução 1 – utilizar o teorema do valor final na equação do erro	0,8
Solução 1 – calcular o erro em regime permanente corretamente	2,4
TOTAL	6,0

Letra A – Solução 2

Se o candidato solucionou a questão a classificação do sistema quanto ao número de polos na origem:

Critério	Pontuação
Solução 2 – demonstrar que a classificação do sistema é tipo 1 por	2,0
meio dos polos do sistema em malha aberta	
Solução 2 – argumentar que a solução só é factível devido à	0,4
realimentação unitária	
Solução 2 – definir a entrada do sistema como 1/s^2	0,8
Solução 2 – calcular o erro em regime permanente corretamente	2,8
TOTAL	6,0

Letra B – Solução 1

Se o candidato solucionou a questão utilizando a equação de malha fechada e o teorema de valor final:

Critério	Pontuação
Solução 1 – encontrar a função de transferência em malha fechada	1,6
Solução 1 – encontrar a equação do erro em função da entrada U(s)	0,4
Solução 1 – encontrar a equação do erro em função da entrada 1/s^2	0,8
Solução 1 – utilizar o teorema do valor final na equação do erro	0,8
Solução 1 – calcular o erro em regime permanente corretamente	2,4
TOTAL	6,0

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONCURSO DOCENTE EBTT - 2024 EDITAL ESPECÍFICO № 03/2024 - ÁREA ENGENHARIA ELÉTRICA CAMPUS ARAXÁ

Letra B – Solução 2

Se o candidato solucionou a questão a classificação do sistema quanto ao número de polos na origem:

Critério	Pontuação
Solução 2 – demonstrar que a classificação do sistema é tipo 2 por	2,0
meio dos polos do sistema em malha aberta e do integrador	
Solução 2 – argumentar que a solução só é factível devido à	0,4
realimentação unitária	
Solução 2 – definir a entrada do sistema como 1/s^2	0,8
Solução 2 – calcular o erro em regime permanente corretamente	2,8
TOTAL	6,0